3,459 research outputs found

    Investigating the Dirac operator evaluation with FPGAs

    Get PDF
    In recent years the computational capacity of single Field Programmable Gate Arrays (FPGA) devices as well as their versatility has increased significantly. Adding to that the High Level Synthesis frameworks allowing to program such processors in a high level language like C++, makes modern FPGA devices a serious candidate as building blocks of a general purpose High Performance Computing solution. In this contribution we describe benchmarks which we performed using a Lattice QCD code, a highly compute-demanding HPC academic code for elementary particle simulations. We benchmark the performance of a single FPGA device running in two modes: using the external or embedded memory. We discuss both approaches in detail using the Xilinx U250 device and provide estimates for the necessary memory throughput and the minimal amount of resources needed to deliver optimal performance depending on the available hardware platform.Comment: 8 pages, 5 figure

    The Straw Tube Trackers of the PANDA Experiment

    Full text link
    The PANDA experiment will be built at the FAIR facility at Darmstadt (Germany) to perform accurate tests of the strong interaction through bar pp and bar pA annihilation's studies. To track charged particles, two systems consisting of a set of planar, closed-packed, self-supporting straw tube layers are under construction. The PANDA straw tubes will have also unique characteristics in term of material budget and performance. They consist of very thin mylar-aluminized cathodes which are made self-supporting by means of the operation gas-mixture over-pressure. This solution allows to reduce at maximum the weight of the mechanical support frame and hence the detector material budget. The PANDA straw tube central tracker will not only reconstruct charged particle trajectories, but also will help in low momentum (< 1 GeV) particle identification via dE/dx measurements. This is a quite new approach that PANDA tracking group has first tested with detailed Monte Carlo simulations, and then with experimental tests of detector prototypes. This paper addresses the design issues of the PANDA straw tube trackers and the performance obtained in prototype tests.Comment: 7 pages,16 figure

    System Response Kernel Calculation for List-mode Reconstruction in Strip PET Detector

    Get PDF
    Reconstruction of the image in Positron Emission Tomographs (PET) requires the knowledge of the system response kernel which describes the contribution of each pixel (voxel) to each tube of response (TOR). This is especially important in list-mode reconstruction systems, where an efficient analytical approximation of such function is required. In this contribution, we present a derivation of the system response kernel for a novel 2D strip PET.Comment: 10 pages, 2 figures; Presented at Symposium on applied nuclear physics and innovative technologies, Cracow, 03-06 June 201

    A novel method for calibration and monitoring of time synchronization of TOF-PET scanners by means of cosmic rays

    Full text link
    All of the present methods for calibration and monitoring of TOF-PET scanner detectors utilize radioactive isotopes such as e.g. 22^{22}Na or 68^{68}Ge, which are placed or rotate inside the scanner. In this article we describe a novel method based on the cosmic rays application to the PET calibration and monitoring methods. The concept allows to overcome many of the drawbacks of the present methods and it is well suited for newly developed TOF-PET scanners with a large longitudinal field of view. The method enables also monitoring of the quality of the scintillator materials and in general allows for the continuous quality assurance of the PET detector performance.Comment: 10 pages, 7 figure
    corecore